Коэффициент наклона прямой
Что такое линейная функция и как выглядит ее график мы подробно разбирали здесь.
В этой статье мы остановимся на том, как находить коэффициент наклона прямой.
Как мы знаем, уравнение прямой имеет вид . В этом уравнении коэффициент при отвечает за наклон прямой и называется коэффициентом наклона. Он равен тангенсу угла между прямой и положительным направлением оси .
Внимание! Не просто между прямой и осью , а именно между прямой и положительным направлением оси .
Например, в прямой коэффициент наклона равен , в прямой коэффициент наклона равен .
В уравнении прямой слагаемое, содержащее отсутствует, следовательно, коэффициент при равен нулю. Угол наклона этой прямой к оси равен нулю - прямая параллельна оси .
Если прямая наклонена вправо, то угол между прямой и положительным направлением оси - острый, соответственно, тангенс этого угла больше нуля, и коэффициент .
Если прямая наклонена влево, то угол между прямой и положительным направлением оси - тупой, соответственно, тангенс этого угла меньше нуля, и коэффициент :
Решим две задачи на нахождение коэффициента наклона прямой.
1. Найдите угловой коэффициент прямой, проходящей через точки с координатами (-1;-1) и (1;3).
Решим эту задачу двумя способами.
А). Так как прямая проходит через точки (-1;-1) и (1;3), координаты этих точек удовлетворяют уравнению прямой . То есть если мы координаты каждой точки подставим в уравнение прямой, то получим верное равенство. Так как у нас две точки, получаем систему:
Вычтем из второго уравнения первое, и получим , отсюда .
Б). Построим график этой функции. Для этого нанесем данные точки А(-1;-1) и В(1;3) на координатную плоскость и проведем через них прямую:
Коэффициент равен тангенсу угла наклона между прямой и положительным направлением оси , на чертеже это угол :
Чтобы найти рассмотрим прямоугольный треугольник АВС с вершинами в данных точках.
Угол прямоугольного треугольника АВС равен углу (соответственные углы, полученный при пересечении параллельных прямых АС и ОХ секущей АВ):
равен отношению противолежащего катета к прилежащему, то есть
2. Найдите угловой коэффициент прямой, проходящей через точки с координатами (4;0) и (0;8).
Решение с помощью системы уравнений абсолютно аналогично решению предыдущей задачи, можете воспроизвести его самостоятельно.
Выполним это задание с помощью графика.
Нанесем данные токи на координатную плоскость и проведем через них прямую:
Угол между прямой и положительным направлением оси ОХ - это угол :
Коэффициент наклона прямой . Чтобы найти , построим прямоугольный треугольник ВОА:
В этом прямоугольном треугольнике угол - внешний. Мы можем найти тангенс внутреннего угла . .
Еще раз! Если прямая наклонена влево, то коэффициент наклона прямой отрицательный.
10.11.2021 Интернет магазин MaxiDveri.com.ua